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Abstract. Performing low hertz labeling for surgical videos at intervals
can greatly releases the burden of surgeons. In this paper, we study the
semi-supervised instrument segmentation from robotic surgical videos
with sparse annotations. Unlike most previous methods using unlabeled
frames individually, we propose a dual motion based method to wisely
learn motion flows for segmentation enhancement by leveraging tempo-
ral dynamics. We firstly design a flow predictor to derive the motion for
jointly propagating the frame-label pairs given the current labeled frame.
Considering the fast instrument motion, we further introduce a flow com-
pensator to estimate intermediate motion within continuous frames, with
a novel cycle learning strategy. By exploiting generated data pairs, our
framework can recover and even enhance temporal consistency of training
sequences to benefit segmentation. We validate our framework with bi-
nary, part, and type tasks on 2017 MICCAI EndoVis Robotic Instrument
Segmentation Challenge dataset. Results show that our method outper-
forms the state-of-the-art semi-supervised methods by a large margin,
and even exceeds fully supervised training on two tasks4.
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1 Introduction

By providing the context perceptive assistance, semantic segmentation of sur-
gical instrument can greatly benefit robot-assisted minimally invasive surgery
towards superior surgeon performance. Automatic instrument segmentation also
serves as a crucial cornerstone for more downstream capabilities such as tool pose
estimation [12], tracking and control [4]. Recently, convolutional neural network
(CNN) has demonstrated new state-of-the-arts on surgical instrument segmen-
tation thanks to the effective data-driven learning [7,13,21,10]. However, these

4 Our code is available at https://github.com/zxzhaoeric/Semi-InstruSeg/
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methods highly rely on abundant labeled frames to achieve the full potential. It
is expensive and laborious especially for high frequency robotic surgical videos,
entailing the frame-by-frame pixel-wise annotation by experienced experts.

Some studies tend to utilize extra signals to generate parsing masks, such as
robot kinematic model [3,16], weak annotations of object stripe and skeleton [6],
and simulated surgical scene [15]. However, additional efforts are still required for
other signal access or creation. Considerable effort has been devoted to utilizing
the large-scale unlabeled data to improve segmentation performance for medical
image analysis [24,2,23]. For example, Bai et al. [2] propose a self-training strat-
egy for cardiac segmentation, where the supervised loss and semi-supervised loss
are alternatively updated. Yu et al. [23] raise an uncertainty-aware mean-teacher
framework for 3D left atrium segmentation by learning the reliable knowledge
from unlabeled data. In contrast, works focusing on the effective usage of unla-
beled surgical video frames are limited. The standard mean teacher framework
has recently been applied to the semi-supervised liver segmentation by com-
puting the consistency loss of laparoscopic images [5]. Ross et al. [20] exploit a
self-supervised strategy by using GAN-based re-colorization on individual unla-
beled endoscopic frames for model pretraining.

Unfortunately, these semi-supervised methods propose to capture the infor-
mation based on separate unlabeled video frames, failing to leverage the inherent
temporal property of surgical sequences. Given 50% labeled frames with a la-
beling interval of 2, a recent approach [10] indicates that utilizing temporal con-
sistency of surgical videos benefit semi-supervised segmentation. Optical flows
are used to transfer predictions of unlabeled frames to adjacent position whose
labels are borrowed to calculate semi-supervised loss. Yet this method heavily
depends on accurate optical flow estimation and fails to provide trustworthy
semi-supervision in model with some erroneous transformations.

In this paper, we propose a dual motion based semi-supervised framework for
instrument segmentation by leveraging the self-contained sequential cues in sur-
gical videos. Given sparsely annotated sequences, our core idea is to derive the
motion flows for annotation and frame transformation that recover the tempo-
ral structure of raw videos to boost semi-supervised segmentation. Specifically,
we firstly design a flow predictor to learn the motion between two frames with
a video reconstruction task. We propose a joint propagation strategy to gener-
ate frame-label pairs with learned flows, alleviating the misalignment of pairing
propagated labels with raw frames. Next, we design a flow compensator with a
frame interpolation task to learn the intermediate motion flows. A novel unsuper-
vised cycle learning strategy is proposed to optimize models by minimizing the
discrepancy between forward predicted frames and backward cycle reconstruc-
tions. The derived motion flows further propagate intermediate frame-label pairs
as the augmented data to enhance the sequential consistency. Rearranging the
training sequence by replacing unlabeled raw frames with generated data pairs,
our framework can greatly benefit segmentation performance. We extensively
evaluate the method on surgical instrument binary, part, and type segmentation
tasks on 2017 MICCAI EndoVis Challenge dataset. Our method consistently
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outperforms state-of-the-art semi-supervised segmentation methods by a large
margin, as well as exceeding the fully supervised training on two tasks.

2 Method

Fig. 1 illustrates our dual motion-based framework. It uses raw frames to learn
dual motion flows, one for recovering original annotation distribution (top branch)
and the other for compensating fast instrument motions (bottom branch). We
ultimately use learned motion flows to propagate aligned frame-label pairs as a
substitute for unlabeled raw frames in video sequences for segmentation training.

FlowNet2.0
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Fig. 1. The illustration of the proposed framework. We learn motion flows along flow
prediction branch and flow compensation branch successively, which are used to joint
propagate the aligned data pairs for semi-supervised segmentation.

2.1 Flow Prediction for Joint Propagation

With a video having T frames as I = {I0, I1, ..., IT−1}, we assume that I is
labeled with intervals. For instance, only {I0, I5, I10, ...} are labeled with interval
4, accounting for 20% labeled data. This setting is reasonable to clinical practice,
as it is easier for surgeons to perform low hertz labeling. Sharing the spirit with
[10], we argue that the motion hidden within the continuous raw frames can
be applied to corresponding instrument masks. Therefore, we first derive the
motion flow from raw frames with a video reconstruction task, as shown in Flow
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Prediction branch in Fig. 1. Given the sequence It′:t+1, we aim to estimate the
motion flow F̂t→t+1 that can translate the current frame It to future frame It+1:

F̂t→t+1 = G(It′:t+1, Ft′+1:t+1), Ît+1 = T (It, F̂t→t+1), (1)

where G is a 2D CNN based flow predictor with the input It′:t. Optical flows Fi

between successive frames Ii and Ii−1 are calculated by FlowNet2.0 [8]. T is a
forward warping function which is differentiable and implemented with bilinear
interpolation [25]. Instead of straightforwardly relying on the optical flow [10],
which suffers from the undefined problem for the dis-occluded pixels, we aim to
learn the motion vector (u, v) as a precise indicator for annotation propagation
which can effectively account for the gap. Intuitively, the instrument mask follows
the same location shift as its frame. For an unlabeled frame It+1, we can borrow
the adjacent annotation Lt and use the derived flow for its label propagation:

L̂t+1 = T (Lt, F̂t→t+1). (2)

Directly pairing the propagated label with the original future frame (It+1, L̂t+1)
for our semi-supervised segmentation may encounter the mis-alignment issue in
the region whose estimated motion flows are inaccurate. Motivated by [26], we
introduce the concept of joint propagation into our semi-supervised setting. We
pair the propagated label with predicted future frame (Ît+1, L̂t+1), while leaving
the original data It+1 merely for motion flow generation. Such joint propagation
avoids introducing the erroneous regularization towards network training. Fur-
thermore, we can bi-directionally apply the derived motion flow with multiple
steps, obtaining (Ît−k:t+k, L̂t−k:t+k) with k steps (k = 1, 2, 4 in our experiments).
The superior advantage of joint propagation can be better demonstrated when
performing such multi-step propagation in a video with severely sparse annota-
tions, as it alleviates accumulating errors within derived motion flows.
Supervised Loss Functions. The overall loss function of flow predictor is:

LPred = λ1L1 + λpLp + λsLs, (3)

consisting of the primary loss, i.e., L1 loss L1 = ‖Ît+1 − It+1‖1, which can
capture subtle modification rather than L2 loss [17]; perceptual loss Lp to retain
structural details in predictions, detailed definition in [11]; smooth loss Ls =
‖∇Ft→t+1‖1 to encourage neighboring pixels to have similar flow values [9]. We
empirically set the weights as λ1 = 0.7, λp = 0.2, and λs = 0.1 for a more robust
combination in eliminating the artifacts and occlusions than [17].

2.2 Flow Compensation via Unsupervised Cycle Learning

The fast instrument motions between successive frames always occur even in
a high frequency surgical video. Smoothing large motions thus improves the
sequential consistency, as well as adds data variety for semi-supervised segmen-
tation. In this scenario, we try to compensate motion flows with a frame inter-
polation task. However, existing interpolation approaches are not suitable for
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our case. Either the optical flow based methods [18,9] rely on consistent motion
frequency, or the kernel based method [14] contradicts the alignment prerequi-
site. Hence, we propose an unsupervised flow compensator with a novel cycle
learning strategy, which forces the model to learn intermediate flows by mini-
mizing the discrepancy between forward predicted frames and their backward
cycle reconstructions.

Given two continuous frames I0 and I1, our ultimate goal is to learn a motion
flow F̂0→i with a time i ∈ (0, 1) to jointly propagate the intermediate frame-
label pair (Îi,L̂i). In the Flow Compensation branch, we first use the pretrained
FlowNet2.0 to compute bi-directional optical flows (F0→1, F1→0) between two
frames. We then use them to approximate the intermediate optical flows F :

Fi→0 = −(1− i)iF0→1 + i2F1→0, F1→i = F1→0 − Fi→0,

Fi→1 = (1− i)2F0→1 − i(1− i)F1→0, F0→i = F0→1 − Fi→1.
(4)

Such approximation suits well in smooth regions but poorly around boundaries,
however, it can still serve as an essential initialization for subsequent cycle learn-
ing. The approximated flows F are used to generate warped frames Î, including
forward predicted frames Îi0 , Î1 and backward reconstructed frames Îi1 , Î0:

Îi0 = T (I0, F0→i), Î1 = T (Îi0 , Fi→1), Îi1 = T (Î1, F1→i), Î0 = T (Îi1 , Fi→0). (5)

We then establish a flow compensator that based on a 5-stage U-Net to refine
motion flows with cycle consistency. It takes the two frames (I0, I1), four initial
approximations F , and four warped frames Î as input, and outputs four refined
flows F̂ , where F̂0→i is applied on I0 for joint frame-label pair generation.
Unsupervised Cycle Loss. The key idea is to learn the motion flow that can
encourage models to satisfy cycle consistency in time domain. Intuitively, we
expect that the predicted Î1 and reconstructed Î0 are well overlapped with the
original raw data I1 and I0. Meanwhile, two intermediate frames warped along
a cycle, i.e., Îi1 and Îi0 , should show the similar representations. Keeping this
in mind, we use L1 loss to primarily constrain the inconsistency of each pair:

Lc
1 = λ0‖Î0 − I0‖1+λi‖Îi0 − Îi1‖1+λ1‖Î1 − I1‖1. (6)

To generate sharper predictions, we add the perceptual loss Lc
p on the three pairs

(perceptual loss definition in [11]). Our overall unsupervised cycle loss is defined
as Lcycle = Lc

1+λpLc
p, where we empirically set λ0 = 1.0, λi = 0.8, λ1 = 2.0, and

λp = 0.01. Our cycle regularization can avoid relying on the immediate frames
and learn the motion flow in a completely unsupervised way.

2.3 Semi-supervised Segmentation

For semi-supervised segmentation, we study the sparsely annotated video se-
quences I = {I0, I1, ..., IT−1} with a label interval h. The whole dataset con-
sists of labeled subset DL = {(It, Lt)}t=hn with N frames and unlabeled subset
DU = {It}t 6=hn with M = hN frames. Using consecutive raw frames, our flow
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predictor learns motion flows with a video reconstruction task, which are used to
transfer the adjacent annotations for the unlabeled data. With the merit of joint
propagation, we pair the generated labels and frames, obtaining the re-labeled
set DR = {Ît, L̂t}t 6=hn with M frames. Subsequently, our flow compensator learns
the intermediate motion flow with an unsupervised video interpolation task. We
can then extend the dataset by adding DC = {Ĩt0 , L̃t0}T−1t=1 with N+M -1 com-
pensated frames with interpolation rate as 1. Our flow predictor and compensator
are designed based on U-Net, with network details in supplementary. We finally
consider DL ∪ DR ∪ DC as the training set for semi-supervised segmentation.
For the network architecture, we basically adopt the same backbone as [10],
i.e., U-Net11 [19] with pretrained encoders from VGG11 [22]. Excitingly, differ-
ent from other semi-supervised methods, our motion flow based strategy retains
and even enhances the inherent sequential consistency. Therefore, we can still
exploit temporal units, such as adding convolutional long short term memory
layer (ConvLSTM) at the bottleneck, to increase segmentation performance.

3 Experiments

Dataset and Evaluation Metrics. We validate our method on the public
dataset of Robotic Instrument Segmentation from 2017 MICCAI EndoVis Chal-
lenge [1]. The video sequences with a high resolution of 1280×1024 are acquired
from da Vinci Xi surgical system during different porcine procedures. We con-
duct all three sub-tasks of this dataset, i.e., binary (2 classes), part (4 classes)
and type (8 classes), with gradually fine-grained segmentation for an instrument.
For direct and fair comparison, we follow the same evaluation manner in [10], by
using the released 8×225-frame videos for 4-fold cross-validation, also with the
same fold splits. Two metrics are adopted to quantitatively evaluate our method,
including mean intersection-over-union (IoU) and Dice coefficient (Dice).
Implementation Details. The framework is implemented in Pytorch with
NVIDIA Titan Xp GPUs. The parameters of pretrained FlowNet2.0 are frozen
while training the overall framework with Adam optimizer. The learning rate is
set as 1e−3 and divided by 10 every 150 epochs. We randomly crop 448×448
sub-images as the framework input. For training segmentation models, we fol-
low the rules in [10]. As for the ConvLSTM based variant, the length of input
sequence is 5. The initial learning rate is set as 1e−4 for ConvLSTM layer while
1e−5 for other network components. All the experiments are repeated 5 times
to account for the stochastic nature of DNN training.
Comparison with Other Semi-supervised Methods. We implement sev-
eral state-of-the-art semi-supervised segmentation methods for comparison, in-
cluding ASC [14] (interpolating labels with adaptive separable convolution), MF-
TAPNet [10] (propagating labels with optical flows), self-training method [2], Re-
color [20] (GAN-based re-colorization for model initialization), and UA-MT [23]
(uncertainty-aware mean teacher). We conduct experiments under the setting of
20% frames being labeled with annotation interval as 4. Most above methods are
difficult to gain profit from temporal units except ASC, due to the uncontinuous
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Table 1. Comparison of instrument segmentation results on three tasks (mean±std).

Methods
Frames used Binary segmentation Part segmention Type segmentation

Label Unlabel IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%)

U-Net11 100% 0 82.55±12.51 89.76±9.10 64.87±14.46 76.08±13.05 36.83±26.36 45.48±28.16
U-Net11? 100% 0 83.17±12.01 90.22±8.83 64.96±14.12 76.57±12.44 40.31±24.38 49.57±25.39

TernausNet [21] 100% 0 83.60±15.83 90.01±12.50 65.50±17.22 75.97±16.21 33.78±19.16 44.95±22.89
MF-TAPNet [10] 100% 0 87.56±16.24 93.37±12.93 67.92±16.50 77.05±16.17 36.62±22.78 48.01±25.64

ASC [14] 20% 80% 78.51±13.40 87.17±9.88 59.07±14.76 70.92±13.97 30.19±17.65 41.70±20.62
ASC? 20% 80% 78.33±12.67 87.04±12.85 58.93±14.61 70.76±13.40 30.60±16.55 41.88±22.24
Self-training [2] 20% 80% 79.32±12.11 87.62±9.46 59.30±15.70 71.04±14.04 31.00±25.12 42.11±24.52
Re-color [20] 20% 80% 79.85±13.55 87.78±10.10 59.67±15.14 71.51±15.13 30.72±25.66 41.47±25.30
MF-TAPNet [10] 20% 80% 80.06±13.26 87.96±9.57 59.62±16.01 71.57±15.90 31.55±18.72 42.35±22.41
UA-MT [23] 20% 80% 80.68±12.63 88.20±9.61 60.11±14.49 72.18± 13.78 32.42±21.74 43.61±26.30
Our Dual MF 20% 80% 83.42±12.73 90.34±9.25 61.77±14.19 73.22±13.25 37.06±25.03 46.55±27.10
Our Dual MF? 20% 80% 84.05±13.27 91.13±9.31 62.51±13.32 74.06±13.08 43.71±25.01 52.80±26.16
U-Net11 30% 0 80.16±13.69 88.14±10.14 61.75±14.40 72.44±13.41 31.96±27.98 38.52±31.02
Our Single MF 30% 70% 83.70±12.47 90.46±8.95 63.02±14.80 74.49±13.76 39.38±25.54 48.49±26.92
Our Dual MF 30% 70% 84.12±13.18 90.77±9.45 63.82±15.63 74.74±13.84 39.61±26.45 48.80±27.67
Our Dual MF? 30% 70% 84.62±13.54 91.63±9.13 64.89±13.26 76.33±12.61 45.83±21.96 56.11±22.33
U-Net11 20% 0 76.75±14.69 85.75±11.36 58.50±14.65 70.70±13.95 23.53±24.84 26.74±27.17
Our Single MF 20% 80% 83.10±12.18 90.15±8.83 61.20±14.10 72.49±12.94 36.72±23.62 46.50±25.09
Our Dual MF 20% 80% 83.42±12.73 90.34±9.25 61.77±14.19 73.22±13.25 37.06±25.03 46.55±27.19
Our Dual MF? 20% 80% 84.05±13.27 91.13±9.31 62.51±13.32 74.06±13.08 43.71±25.01 52.80±26.16
U-Net11 10% 0 75.93±15.03 85.09±11.77 55.24±15.27 67.78±14.97 15.87±16.97 19.30±19.99
Our Single MF 10% 90% 82.05±14.35 89.23±10.65 57.91±14.51 69.28±14.79 30.24±21.33 40.12±24.21
Our Dual MF 10% 90% 82.70±13.21 89.74±9.56 58.29±15.60 69.54±15.23 31.28±19.53 41.01±21.91
Our Dual MF? 10% 90% 83.10±12.45 90.02±8.80 59.36±14.38 70.20±13.96 33.64±20.19 43.20±22.70

Note: ? denotes that the temporal unit ConvLSTM is added at the bottleneck of the segmentation network.

labeled input or network design. We use the same network backbone (U-Net11)
among these methods for fair comparison. Table 1 compares our segmentation
results with other semi-supervised methods. We also report fully supervised re-
sults of U-Net11 as upper bound, as well as two benchmarks TernausNet [21],
and MF-TAPNet for reference. Among the semi-supervised methods, UA-MT
achieves slightly better performance as it draws out more reliable information
from unlabeled data. Notably, our method consistently outperforms UA-MT
across three tasks by a large margin, i.e., 2.68% in IoU and 2.24% in Dice on
average. After adding the temporal unit, results of ASC degrade instead on two
tasks due to the inaccurate interpolated labels. As our semi-supervised method
can enhance sequential consistency by expanded frame-label pairs, our results
can be further improved with ConvLSTM, even surpassing the fully supervised
training (U-Net11?) by 0.91% Dice on binary task and 3.23% Dice on type task.
Analysis of Our Semi-supervised Methods. For 6×225-frame training videos
in each fold, we study the frames labeled at an interval of 2, 4, and 8, resulting in
30%, 20%, and 10% annotations. Table 1 also lists results of three ablation set-
tings: (1) Our Single MF: U-Net11 trained by set {DL∪DR} with Flow Prediction;
(2) Our Dual MF: U-Net11 trained by set {DL∪DR∪DC} with Flow Prediction
and Compensation; (3) Our Dual MF?: U-Net11 embedded with ConvLSTM and
trained by set {DL ∪DR ∪DC}. It is observed that under all annotation ratios,
compared with U-Net11 trained by labeled set DL alone, our flow based frame-
work can progressively boost the semi-supervised performance with generated
annotations. We gain the maximum benefits in the severest condition (10% la-
beling), where our Single MF has already largely improved the segmentation by
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Fig. 2. Visualization of instrument (a) binary, (b) part, and (c) type segmentation.
From left to right, we present frame with ground-truth, results of fully supervised
training and our semi-supervised methods. ? denotes incorporating ConvLSTM units.

6.12% IoU and 4.14% Dice (binary), 2.67% IoU and 1.50% Dice (part), 14.37%
IoU and 20.82% Dice (type). Leveraging compensated pairs, our Dual MF with
30% and 20% labels is even able to exceed the full annotation training by 1-3%
IoU or Dice, corroborating that our method can recover and adjust the motion
distribution for better network training. It can be further verified using temporal
units. We only see slight improvements in fully supervised setting (the first two
rows) because some motion inconsistency existed in original videos decreases the
model learning capability of temporal cues. Excitingly, the increment is obvious
between our Dual MF and Dual MF?, especially for the toughest type segmen-
tation. For instance, IoU and Dice can be boosted by 6.65% and 6.25% in 20%
labeling case. Fig. 2 shows some visual results. Our Dual MF? can largely sup-
press misclassified regions in Ultrasound probes for binary and part tasks, and

Fig. 3. Example of rearranged training sequence with propagation step k = 1.
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achieve more complete and consistent type segmentation. It is even better at dis-
tinguishing hard mimics between instruments than fully supervised U-Net11?.
Analysis of Frame-Label Pairs. Our joint propagation can alleviate the mis-
alignment issue from label propagation. In Fig. 3, labels in certain regions, like
jaw (yellow) and shaft (orange) of instruments, fail to align with the original
frames (first row) due to imprecision in learned flows, but correspond well with
propagated frames (second row) as they experience the same transformation.
The good alignment is crucial for segmentation. Besides, our learned flows can
propagate instruments to a more reasonable position with smooth motion shift.
The fast instrument motion is slowed down from It to Ît+1 with smoother move-
ment of Prograsp Forceps (orange), greatly benefiting ConvLSTM training.

4 Conclusions

We propose a flow prediction and compensation framework for semi-supervised
instrument segmentation. Interestingly, we study the sparsely annotated surgical
videos from the fresh perspective of learning the motion flow. Large performance
gain over state-of-the-art semi-supervised methods demonstrates the effective-
ness of our framework. Inherently our method can recover the temporal structure
of raw videos and be applied to surgical videos with high motion inconsistency.
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